动态字符串
Redis没有直接使用C语言传统的字符串表示(以空字符结尾的字符数组),而是自己构建了一种名为简单动态字符串(SDS)的抽象类型,并将SDS用作Redis的默认字符串表示。
在Redis里面,C字符串只会作为字符串字面量用在一些无需对字符串值进行修改的地方。当Redis需要的不仅仅是一个字符串字面量,而是一个可以被修改的字符串值时,Redis就会使用SDS来表示字符串的值,比如在Redis的数据库里面,包含字符串值的键值对在底层都是由SDS实现的。
除了用来保存数据库中的字符串值之外,SDS还被用作缓冲区:AOF模块中的AOF缓冲区,以及客户端状态中的输入缓冲区,都是由SDS实现的。
SDS的定义
每个sds.h/sdshdr结构表示一个SDS值
struct sdshdr {
// 记录buf数组中已使用字节的数量
// 等于SDS所保存的字符串的长度
int len;
// 记录buf数组中未使用字节的数量
int free;
// 字节数组,用于保存字符串
char buf[];
}
SDS遵循C字符串以空字符结尾的惯例,保存空字符的1字节空间不计算在SDS的len属性里面,并且为空字符分配额外的1字节空间,以及添加空字符到字符串末尾等操作,都是由SDS函数自动完成的,所以这个空字符对于SDS的使用者来说是完全透明的。遵循空字符结尾这一惯例的好处是。SDS可以直接重用一部分C字符串函数库里面的函数。
SDS与C字符串的区别
- 常数复杂度获取字符串长度
- 杜绝缓冲区溢出
与C字符串不同,SDS的空间分配策略完全杜绝了发生缓冲区溢出的可能性:当SDS API需要对SDS进行修改时,API会先检查SDS的空间是否满足修改所需的要求,如果不满足的话,API会自动将SDS空间扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用SDS既不需要手动修改SDS的空间大小,也不会出现前面所说的缓冲区溢出问题。 - 减少修改字符串时带来的内存重分配次数
空间预分配:空间预分配用于优化SDS的字符串增长操作:当SDS的API对一个SDS进行修改,并且需要对SDS进行空间扩展的时候,程序不仅会为SDS分配修改所必须要的空间,还会为SDS分配额外的未使用空间。
其中,额外分配的未使用空间数量由以下公式决定:(1)如果对SDS进行修改之后,SDS的长度将小于1MB,那么程序分配和len属性同样大小的未使用空间,这时SDS len属性的值将和free属性的值相同。(2)如果对SDS进行修改之后,SDS的长度将大于等于1MB,那么程序会分配1MB的未使用空间。通过空间预分配策略,Redis可以减少连续执行字符串增长操作所需的内存重分配次数。
链表
链表提供了高效节点重排的能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地调整链表的长度。
链表和链表节点的实现
每个链表节点使用一个addList.h/listNode结构来表示:
typedef struct ListNode{
// 前置节点
struct ListNode *prev;
// 后置节点
struct ListNode *next;
// 节点的值
void *value;
} listNode;
Redis的链表实现的特性可以总结如下:
- 双端:链表节点带有prev和next指针,获取某个节点的前置节点和后置节点的复杂度都是o(1)。
- 无环:表头结点的prev指针和表尾节点的next指针都指向NULL,对链表的访问以NULL为终点。
- 带表头指针和表尾指针:通过list结构的head指针和tail指针,程序获取链表的表头和表尾节点的复杂度为o(1)。
- 带链表长度计数器:程序使用list结构的len属性来对list持有的链表节点进行计数,程序获取链表中节点数量的复杂度为o(1)。
- 多态:链表节点使用void* 指针来保存节点的值,并且可以通过list结构的dup、free、match三个属性为节点值设置类型特定函数,所以链表可以用于保存各种不同类型的值。
字典
字典,又称为符号表(symbol table)、关联数组(associative array)或映射(map),是一种用于保存键值对(key-value pair)的抽象数据结构。
在字典中,一个键(key)可以和一个值(value)进行关联(或者说将键映射为值),这些关联的键和值就称为键值对。
字典中每个键都是独一无二的,程序可以在字典中根据键查找与之关联的值,或者通过键来更新值,又或者根据键来删除整个键值,等等。
字典经常作为一种数据结构内置在很多高级编程语言里面,但Redis所使用的C语言并没有内置这种数据结构,因此Redis构建了自己的字典实现。
字典在Redis中的应用相当广泛,比如Redis的数据库就是使用字典来作为底层实现的,对数据库的增删改查操作也是构建在对字典的操作之上的。
除了用来表示数据库之外,字典还是哈希键的底层实现之一,当一个哈希键包含的键值对比较多,又或者键值对中的元素都是比较长的字符串时,Redis就会使用字典作为哈希键的底层实现。
字典的实现
Redis的字典使用哈希表作为底层实现,一个哈希表里面可以有多个哈希表节点,而每个哈希表节点就保存了字典中的一个键值对。
typedef struct dictht{
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于size-1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
table属性是一个数组,数组中的每个元素都是一个指向dict.h/dictEntry结构的指针,每个dictEntry结构都保存着一个键值对。size属性记录了哈希表的大小,也即是table数组的大小,而used属性则记录了哈希表目前已有节点的数量。sizemask属性的值总是等于size-1,这个属性和哈希值一起决定了一个键应该被放到table数组的哪个索引上面。
哈希表节点使用dictEntry结构表示,每个dictEntry结构都保存着一个键值对:
typedef struct dictEntry{
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
key属性保存着键值对中的键,而v属性则保存着键值对中的值,其中键值对的值可以是一个指针,或者是一个uint64_t整数,又或者是一个int64_t整数。
next属性是指向另一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对连接在一起,以此来解决键冲突(collision)的问题。
哈希算法
当要将一个新的键值对添加到字典里面时,程序需要先根据键值对的键计算出哈希值和索引值,然后再根据索引值,将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。
解决键冲突
当有两个或以上数量的值被分配到了哈希表数组的同一个索引上面时,我们称这些键发生了冲突(collision)。
Redis的哈希表使用链地址法(separate chaining)来解决键冲突,每个哈希表节点都有一个next指针,多个哈希表节点可以用next指针构成一个单向链表,被分配到同一个索引上的多个节点可以用这个单向链表连接起来,这就解决了键冲突的问题。
因为dictEntry节点组成的链表没有指向链表表尾的指针,所以为了速度考虑,程序总是将新节点添加到链表的表头位置(复杂度为o(1)),排在其他已有节点的前面。
rehash
随着操作的不断执行,哈希表保存的键值对会逐渐地增多或者减少,为了让哈希表的负载因子维持在一个合理的范围之内,当哈希表保存的键值对数量太多或者太少时,程序需要对哈希表的大小进行相应的扩展或者收缩。
扩展和收缩哈希表的工作可以通过执行rehash操作来完成,Redis对字典的哈希表执行rehash的步骤如下:
(1)、为字典的ht[1]哈希表分配空间,这个哈希表的空间大小取决于要执行的操作,以及ht[0]当前包含的键值对的数量:如果执行的是扩展操作,那么ht[1]的大小为第一个大于等于ht[0],used*2的2的n次幂;如果执行的是收缩操作,那么ht[1]的大小为第一个大于等于ht[0].used的2的n次幂。
(2)、将保存在ht[0]中的所有键值对rehash到ht[1]上面;rehash指的是重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。
(3)、当ht[0]包含的所有键值对都迁移到ht[1]之后,释放ht[0],将ht[1]设置为ht[0],并在ht[1]新创建一个空白哈希表,为下一次rehash做准备。
渐进式rehash执行期间的哈希表操作
因为在进行渐进式rehash的过程中,字典会同时使用ht[0]和ht[1]两个哈希表,所以在渐进式rehash进行期间,字典的删除、查找、更新等操作会在两个哈希表上进行。另外,在渐进式rehash执行期间,新添加到字典的键值对一律会保存到ht[1]里面,而ht[0]则不再进行任何添加操作,这一措施保证了ht[0]包含的键值对会只减不增,并随着rehash操作的执行而最终变成空表。
跳跃表
跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。
跳跃表支持平均o(logN),最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。
Redis使用跳跃表作为有序集合键的底层实现之一,如果一个有序集合包含的元素数量比较多,又或者有序集合中元素的成员是比较长的字符串时,Redis就会使用跳跃表来作为有序集合键的底层实现。